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COVID-19 AND DYSLIPIDEMIA 

Khairullayeva Gulrukh Saidburkhanovna  

Bukhara State Medical Institute, Bukhara, Uzbekistan 

Resume. The COVID‐ 19 pandemic is a global problem for both the 

management of patients with acute disease and post-cystic complications. Against the 

background of COVID-19, the development of systemic inflammation is often 

observed, accompanied by a "cytokine storm", hemostasis disorders and severe 

vasculitis. New evidence suggests that impaired regulation of lipid metabolism may 

contribute to the development of these complications. This review summarizes the 

latest information on the potential mechanisms associated with dyslipidemia against 

the background of COVID-19. In particular, it has been suggested that changes in the 

amount and composition of high-density lipoproteins (HDL) in COVID-19 may 

significantly weaken the anti-inflammatory and antioxidant effects of HDL and 

contribute to inflammation in the lungs. In addition, it has been hypothesized that 

lipoproteins with oxidized phospholipids and fatty acids can lead to viral organ 

damage due to hyperactivation of scavenger receptors ("scavenger receptors") of 

innate immunity. 

Keywords: COVID-19, dyslipidemia, cytokine storm, vasculitis. 

  

Introduction. The clinical manifestations of COVID-19 range from 

asymptomatic to severe pneumonia, leading to acute respiratory distress syndrome 

(ARDS) and cardiogenic shock, especially among elderly patients with concomitant 

chronic diseases [1, 2]. Violations of the regulation of acquired immunity against the 

background of aging or chronic systemic metabolic disorders can lead to a decrease 

in the tolerance of viral infections [3]. Hyperlipidemia and hyperglycemia are known 

to reduce the immune response and can lead to persistent chronic inflammation, 

which increases the risk of cardiovascular diseases (CVD) [4, 5]. In addition, 

increased metabolic needs in acute inflammation caused by viral infection leads to a 

decrease in myocardial oxygenation, ischemic damage and vascular dysfunction with 

thrombotic complications [4]. Thus, it is obvious that traditional CVD risk factors can 

significantly contribute to morbidity and mortality from SARS-CoV-2 infection. 

Changes in lipoproteins in COVID‐ 19 

The control of plasma lipids and lipoproteins is an important part of the 

modern approach to risk management of cardiovascular diseases. Low HDL levels 

are a predictor of the occurrence and progression of CVD [6, 7] and serve as a 

biomarker of an increased risk of mortality from all causes, as well as the occurrence 

of nonfatal myocardial infarction, even in patients taking statins [8]. The most studied 

function of HDL is the reverse transport of cholesterol (OTC) from tissues to the liver 

[9]. In addition to their function in OTC, HDL particles have a number of other 

properties that can participate in the modulation of the immune system and the fight 

against infectious diseases. In particular, HDL particles have the property of binding 

and neutralizing pathogen-associated lipids (for example, lipopolysaccharide, 
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lipoteichoic acid), which mediate excessive activation of the immune system in 

sepsis. HDL particles also have immunomodulatory, antithrombotic and antioxidant 

effects [10]. For example, HDL levels have been shown to be inversely proportional 

to the frequency of some autoimmune diseases [11]. 

High-density lipoproteins are a heterogeneous set of particles of different sizes 

and apolipoprotein composition. ApoA-I is the main protein in HDL, it is present in 

most HDL particles, whereas other apolipoproteins, such as ApoE, are associated 

with specific HDL subspecies. The transport of cellular cholesterol is mainly due to 

the interaction between relatively ApoA-I-poor lipids in small discoid (pre‐ beta) 

forms of HDL and cellular carriers (for example, ABCA1, ABCG1 and SR-BI). 

The SARS-CoV-2 virus binds to angiotensin converting enzyme 2 (ACE2) 

through S-proteins, which facilitate its entry into the cell, followed by damage by 

alveolar macrophages. The tissue microenvironment releases pro-inflammatory 

cytokines and chemokines (IL-6, MCP1 and MIP), which promote the attraction of 

macrophages, neutrophils and T cells. This activation of cells leads to uncontrolled 

inflammation and dysregulation of immune responses with further accumulation of 

eicosanoids such as PGE2, TXB2, LTB4 and LXA4. Persistent inflammation 

culminates in the modulation of HDL-related apolipoproteins, for example, in a 

decrease in the level of apolipoprotein A-I (ApoA-I), ApoE and an increase in serum 

amyloid protein A, which negatively affects the anti-inflammatory, antioxidant and 

immunomodulatory functions of HDL. An imbalance in the antioxidant system also 

causes modification of LDLP through the intracellular lectin-like receptor of LDLP 

(LOX-1). The extracellular part of LOX-1, soluble in serum (sLOX-1), additionally 

stimulates the interaction between oxidized lipids and circulating macrophages, 

which leads to the release of proinflammatory cytokines such as IL-6, IL-10 and 

tumor necrosis factor α (TNF-α). Impaired function of paraoxonase 1 (PON1) on 

HDL and an excessive inflammatory reaction lead to further lipid oxidation. 

Excessive formation of LDL and HDL leads to a change in lipoprotein transport and 

disruption of the reverse cholesterol transport pathway (RCT) (shown on the left), 

characterized by insufficient interaction of ApoA-I with adenosine triphosphate-

binding transporter A1 (ABCA1) on macrophages and a decrease in cholesterol 

esterification lecithin-cholesterol-acyltransferase (LCAT). This leads to a decrease in 

the return of cholesterol esters to the liver either directly after interaction with hepatic 

scavenger receptors-B1 (SR-B1), or indirectly after transfer to HDL by the 

cholesterol ester transporter protein (CETP) and absorption by hepatic LDL receptors 

(LDL-R). Low levels of ApoE and ApoC-III on HDL lead to a decrease in lipoprotein 

lipase (LPL) activity, which in turn leads to the accumulation of LDL and TG. 

HDL-related apolipoproteins such as apolipoprotein A-I (ApoA-I) and 

apolipoprotein M (ApoM) interact with lipid rafts on cell membranes rich in immune 

cell receptors, such as Toll-like receptors (TLR) on macrophages [12] and T-cell 

receptors [13], and modulate the immune response. It is noteworthy that early and 

later literature suggested the presence of a feedback link between HDL and the risk of 
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hospitalization for an infectious disease [14]. It is also known that the anti-

inflammatory and antioxidant properties of HDL are significantly reduced during 

influenza [15] and HIV infection [16]. Indeed, lower levels of both HDL and LDL 

were found in HIV patients, which recovered after treatment [12]. In the context of 

COVID-19, it has recently been reported that low levels of total cholesterol (OHC), 

HDL-C and LDL-C are associated with disease severity and mortality [17, 18]. 

Elevated plasma triglyceride levels during infection and inflammation are also a well-

known phenomenon [14, 19]. 

The mechanisms by which increased inflammation reduces HDL functionality 

are not precisely defined. It has previously been observed that inflammation alters the 

composition of HDL apolipoproteins. It was noted that inflammation alters the 

expression of apolipoprotein genes in the liver [20] and promotes the binding of 

proinflammatory serum amyloid protein A (SAA), which, in turn, replaces and 

reduces the levels of ApoA-I in HDL [21]. In addition, in conditions of acute 

inflammation, reduced levels of lecithin cholesterol acyltransferase (LCAT) in 

plasma can also alter HDL function and further disrupt the inflammatory response 

[22]. Interestingly, a recent study showed that HDL under the action of ex vivo HCT 

reduces the amount of HDL-bound SAA, while simultaneously increasing the amount 

of HDL-bound ApoA-I and HDL function [23]. It has recently been shown that 

plasma SAA levels dynamically increase depending on the severity of COVID-19, 

and SAA has been promoted to the role of a biomarker for assessing the severity and 

prognosis of COVID-19 [24]. Together, these results suggest that the composition 

and functions of HDL in patients with COVID-19 are changing, and interventions 

aimed at their recovery can improve HDL function and reduce the burden of the 

disease. 

Other mechanisms leading to HDL dysfunction include oxidative modification 

of ApoA-I on the background of inflammation, which reduces OTC [25]. 

Paraoxonase 1 (PON1), an antioxidant enzyme present in HDL, is also inactivated 

during oxidative stress caused by inflammation [26], which further impairs HDL 

function. In practice, low PON1 activity is associated with a deterioration in the 

prognosis of cardiovascular diseases, and it has been found to decrease in various 

inflammatory [27] and infectious [28] diseases. IL-10, which under certain 

circumstances can act as a pro-inflammatory cytokine, can also reduce HDL levels in 

plasma [44] by increasing micropinocytosis [29]. 

Violation of the antioxidant activity of HDL additionally leads to the oxidation 

of lipids, in particular, to the formation of oxidized LDL. As discussed below, 

oxidized LDL and HDL are powerful activators of "wiper" receptors for the removal 

of oxidized LDL, which cause increased inflammation and aggravation of tissue 

damage. 

ApoE and COVID ‐  19 

In addition to ApoA-I, ApoE is also found among HDL, as well as in 

lipoproteins containing apoB. ApoE serves as a ligand for the clearance of 
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triglyceride-rich lipoproteins apoB-containing lipoproteins by binding to receptors of 

membrane lipoproteins from the LDL receptor family [30-33]. The most common 

isoform, ApoE3, has Cys in codon 112 and Arg in codon 158. The ApoE2 isoform 

(Arg158Cys) is associated with a decrease in LDL levels, whereas the ApoE4 

isoform (Cys112Arg) is associated with elevated plasma LDL levels and Alzheimer's 

disease [30]. ApoE deficiency in humans leads to an increase in plasma triglycerides 

and cholesterol in apoB-containing lipoproteins, a decrease in HDL levels, palmar 

tuberculous xanthoma and premature cardiovascular diseases [34, 35]. It is well 

known that the absence of ApoE in knockout mice leads to atherogenesis against the 

background of low HDL levels and high levels of TG-rich lipoproteins [36]. It has 

been shown that increasing the activity of both ApoE and phospholipid transporter 

protein improves the delivery of energy substrates and phospholipids to tissues, 

which contributes to maintaining cell membrane homeostasis in intensive care 

patients [37]. 

In addition to delivering apoB lipoprotein to cells, ApoE has additional 

functions. Thus, it has been shown that through its receptor-binding domain, it 

protects LDL from oxidation [56] and can also participate in OTC [38]. ApoE-

containing HDL promotes the outflow of cholesterol from extrahepatic cells [39] 

through ABCA1- and ABCG1-dependent processes, and this mechanism is 

counteracted by the presence of ApoC-III [40]. ApoE is also expressed and secreted 

by monocytes and macrophages with anti-atherosclerotic action, it is also present in 

other tissues such as adipose tissue, brain, kidneys and adrenal glands [30, 41]. It was 

noted that despite the fact that the vascular endothelium does not produce ApoE, 

local expression of this protein by macrophages has a paracrine effect on the 

endothelium, leading to inhibition of VCAM-1, stimulation of NO production, 

suppression of endothelial activation and reduction of monocyte adhesion to the 

endothelium, whereas ApoE4 counteracts these anti-inflammatory effects [30]. 

Some evidence suggests that deficiency of ApoE function in SARS-CoV-2 

dyslipidemia may contribute to the progression of the disease and the development of 

complications. It is noteworthy that ApoE is expressed in lung macrophages and 

alveolar epithelial cells (both type I and type II) [42]. ApoE knockout mice are very 

susceptible to acute lung damage due to an IL-6-dependent mechanism that increases 

the permeability of endothelial cells to oxidized LDL [43]; IL-6 is well known to be 

the main cytokine released during the "cytokine storm" in COVID-19 [44]. In 

humans, ApoE can potentially act as an endogenous signal triggering the formation of 

NLRPS inflammasome in alveolar macrophages in asthma [45]. Moreover, the APOE 

gene is associated with the altered physiology of human lungs [46]. It has also been 

reported that the ApoE4 isoform may be a predictor of the severity of COVID-19. 

ApoE4/E4 homozygotes from the UK Biobank were more likely to be positive for 

COVID-19 (OR (OR) 2.31, CI (CI) 1.65–3.24, P = 1.19 × 106). The association 

between the ApoE4/E4 genotype and COVID-19 was independent of concomitant 

dementia, cardiovascular disease, or type 2 diabetes. 

https://portal.issn.org/resource/ISSN/2231-2218
http://www.ajpbr.org/
http://universalimpactfactor.com/wp-content/uploads/2021/03/Asian-journal-of-pharmaceutical-and-biological-research.jpg


Asian journal of Pharmaceutical and biological research 2231-2218 

http://www.ajpbr.org/ 

researchbib 8  

Volume 13 Issue 3  

SEPT.-DEC. 2024 

16 

Oxidized lipoproteins and scavenger receptors in COVID ‐ 19 

Low-density lipoproteins are the main transport for the transfer of cholesterol 

and phospholipids into the bloodstream. During acute inflammation, LDL and its 

main apolipoprotein, apolipoprotein B (apoB), are oxidized (LDL). Lipid 

hydroperoxides derived from the lipoxygenase pathway [47] and acids derived from 

arachidonic acid and linoleic acid accumulate, and some of them are esterified into 

cholesterol esters, triacylglycerin and phospholipids in LDL [48]. Oxidized 

phospholipids (ohFL) in ohLPNP are recognized by scavenger receptors as damage-

related molecular patterns (damps) and trigger a cascade of intracellular signaling 

events culminating in the activation of the inflammasome and dysfunction of 

endothelial cells, which contribute to the initiation and progression of atherosclerosis 

[49]. In addition, ohFL production increases in the lungs of people and animals 

infected with the virus, and ohFL induces cytokine production by macrophages and 

acute lung inflammation in mice [50]. 

Scavenger receptors, lectin-like LDL receptors expressed in endothelial cells, 

macrophages and smooth muscle cells, are capable of binding to several ligands, 

including LDL, HDL, C-reactive protein and glycated end products [51, 52]. The 

binding of LDLP to the lectin-like LDL receptor leads to the internalization of LDLP 

and their accumulation in cells, which is believed to contribute to the early 

development of atherosclerotic lesions. In addition, ligand binding to the lectin-like 

LDL receptor triggers intracellular signaling processes leading to the launch of 

proapoptotic, prooxidant and proinflammatory pathways, causing cellular dysfunction 

associated with atherosclerosis and an increased risk of cardiovascular diseases [51, 

53]. Since the lectin-like LDL receptor binds to damaged lipids such as LDL and 

HDL, these receptors can be a key mediator of cardiovascular diseases, causing 

inflammatory growth of atheroma and eventually lead to erosion and plaque 

detachment [54]. 

The association of activation of the lectin-like LDL receptor with acute 

inflammatory conditions increases the likelihood that LOX-1 is also activated and 

will contribute to complications of COVID-19. Recent clinical data suggest that 

MERS-CoV-2 can cause a multisystem inflammatory syndrome in children 

resembling Kawasaki disease (KD) [55, 56]. These data suggest that MERS-CoV-2 

infection can cause endothelial damage in many organs [56]. 
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